
gLobaL
ediTion

Java Software Solutions
Foundations of Program Design
eighTh ediTion

John Lewis • William Loftus

JOHN LEWIS
Virginia Tech

•
WILLIAM LOFTUS

Accenture

•
Global Edition contributions by

Mohit Tahiliani

NITK Surathkal

FOUNDATIONS OF PROGRAM DESIGN

Global Edition

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

SOFTWARE SOLUTIONS

Eighth EditionTMjava

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Marilyn Lloyd
Head, Learning Asset
Acquisition, Global Edition: Laura Dent
Acquisitions Editor, Global Edition: Karthik Subramaniun
Project Editor, Global Edition: Anuprova Dey

 Chowdhuri.
Senior Operations Supervisor: Alan Fischer

Manufacturing Buyer: Lisa McDowell
Art Director: Linda Knowles
Cover Designer: Shree Mohanambal
 Inbakumar/Lumina

Datamatics, Inc.
Image Permission Coordinator: Rita Wenning
Cover Photograph: Eugene Sergeev/Shutterstock
Media Editor: Daniel Sandin
Media Project Manager: Wanda Rockwell
Full-Service Project Management: H arleen Chopra, Cenveo®

Publisher Services
Composition: C enveo Publisher Services
Printer/Binder: Courier Kendallville
Cover Printer: Courier Kendallville

Text Font: Sabon LT Std

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of John Lewis and William Loftus to be identified as the authors of this work have been asserted by them in
 accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java Software Solutions: Foundations Of Program Design, 8th
edition, ISBN 978-0-13-359495-9, by John Lewis and William Loftus, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmittedin any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, LondonEC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear below,
or on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 8 Sabon LT Std by Cenveo Publishing Services

Printed and bound by Courier Kendallville

The publisher’s policy is to use paper manufactured from sustainable forests.

10 9 8 7 6 5 4 3 2 1—DOC—14 13 12 11 10

ISBN 10: 1292018232

 ISBN 13: 978-1-29-201823-2
ISBN 13: 978-1-29-20 -6977 7

 (Print)
 (PDF)

This book is dedicated to our families.

Sharon, Justin, Kayla, Nathan, and Samantha Lewis

and

Veena, Isaac, and Dévi Loftus

 This page is intentionally left blank.

5

Welcome to the Eighth Edition of Java Software Solutions: Foundations of
Program Design. We are pleased that this book has served the needs of so many
students and faculty over the years. This edition has been tailored further to
improve the coverage of topics key to introductory computing.

New to This Edition
The biggest updates to this edition include the following:

■ Updated all graphical screen shots.

■ Added additional screen shots to show interface options.

■ Revised end-of-chapter exercises and programming projects.

■ Revised all code for consistent spacing issues.

■ Improved discussions of Java translation, text file I/O, and other topics.

Feedback from both instructors and students continues to make it clear that we
have hit the mark with the overall vision of the book. The emphasis remains on
presenting underlying core concepts in a clear and gradual manner. The Graphics
Track sections in each chapter still segregate the coverage of graphics and graphi-
cal user interfaces, giving extreme flexibility in how that material gets covered.
The casual writing style and entertaining examples still rule the day.

The displays of screen shots for graphics-based programs, including programs with
graphical user interfaces, have all been updated. The previous versions were dated in
terms of the look-and-feel. We also updated some as needed to improve pedagogy.

On some graphics programs, we added additional screen shots in situations
where it was beneficial to see how the program window looks under different
situations or window sizes.

We also focused on the end-of-chapter exercises and programming projects in
this revision. We added, subtracted, and modified these to provide an appropriate
and updated set.

Throughout the book, the examples had become inconsistent in some issues
related to the use of white space. We carefully went through each example and
code fragment to ensure that a consistent and appropriate style was applied.

Finally, as always, we improved discussions throughout the book, sometimes
in minor ways, and a few include significant improvements. In particular, the
discussion of Java translation was updated in Chapter 1 and throughout to focus

Preface

6 prEfacE

on term JVM rather than the less helpful term interpreter. The figure related to
the translation process was also updated. The text file I/O discussion was also
updated, along with its example.

cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound
introductory text:

■ True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing should
be discussed in object-oriented terms. That does not mean, however, that
the first program a student sees must discuss the writing of multiple classes
and methods. A student should learn to use objects before learning to write
them. This text uses a natural progression that culminates in the ability to
design real object-oriented solutions.

■ Sound programming practices. Students should not be taught how to
program; they should be taught how to write good software. There’s a
difference. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates
practices that serve as the foundation of good programming skills. These
practices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. The Software Failure vignettes reiterate these lessons
by demonstrating the perils of not following these sound practices.

■ Examples. Students learn by example. This text is filled with fully
 implemented examples that demonstrate specific concepts. We have
 intertwined small, readily understandable examples with larger, more
 realistic ones. There is a balance between graphics and nongraphics programs.
The VideoNotes provide additional examples in a live presentation format.

■ Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such,
we use them throughout the text in a well-defined set of sections that we
call the Graphics Track. This coverage includes the use of event processing
and GUIs. Students learn to build GUIs in the appropriate way by using a
natural progression of topics. The Graphics Track can be avoided entirely
for those who do not choose to use graphics.

chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,

 prEfacE 7

as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. Then the if statement and while loop are explored in detail.
Once loops are established, the concept of an iterator is introduced and the
Scanner class is revisited for additional input parsing and the reading of text files.
Finally, the ArrayList class introduced, which provides the option for managing
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop.
The for-each loop is also used to process iterators and ArrayList objects.

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of issues
related to the design of classes. Techniques for identifying the classes and objects
needed for a problem and the relationships among them are discussed. This chap-
ter also covers static class members, interfaces, and the design of enumerated type
classes. Method design issues and method overloading are also discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array processing.
The nature of an array as a low-level programming structure is contrasted to the
higher-level object management approach. Additional topics include command-
line arguments, variable length parameter lists, and multidimensional arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

8 prEfacE

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an
introduction to a CS2 course.

Supplements

Student Online resources
These student resources can be accessed at the book’s Companion Website,
www.pearsonglobaleditions.com/lewis:

■ Source Code for all the programs in the text

■ Links to Java development environments

■ VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced
instruction with easy navigation including the ability to select, play, re-
wind, fast-forward, and stop within each VideoNote exercise. Margin icons
in your textbook let you know when a VideoNote video is available for a
particular concept or homework problem.

Instructor resources
The following supplements are available to qualified instructors only. Visit the
Pearson Education Instructor Resource Center www.pearsonglobaleditions.com/
lewis for information on how to access them:

■ Presentation Slides—in PowerPoint.

■ Solutions—includes solutions to exercises and programming projects.

■ Test Bank with powerful test generator software—includes a wealth of free
response, multiple-choice, and true/false type questions.

■ Lab Manual—lab exercises are designed to accompany the topic
progression in the text.

 prEfacE 9

features
Key concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the
end of each chapter.

Listings. All programming examples are presented in clearly labeled listings, fol-
lowed by the program output, a sample run, or screen shot display as appropri-
ate. The code is colored to visually distinguish comments and reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the
Java language are discussed in special highlighted sections with diagrams that
clearly identify the valid forms for a statement or construct. Syntax diagrams for
the entire Java language are presented in Appendix L.

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without loss
of continuity, or focused on specifically as desired. The material in any Graphics
Track section relates to the main topics of the chapter in which it is found.
Graphics Track sections are indicated by a brown border on the edge of the page.

Summary of Key concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-review Questions and answers. These short-answer questions review
the fundamental ideas and terms established in the preceding section. They are
designed to allow students to assess their own basic grasp of the material. The
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or
writing of code fragments, and a thorough grasp of the chapter content. While the
exercises may deal with code, they generally do not require any online activity.

programming projects. These problems require the design and implementation
of Java programs. They vary widely in level of difficulty.

VideoNotes. Presented by the author, VideoNotes explain topics visually through
informal videos in an easy-to-follow format, giving students the extra help they need
to grasp important concepts. Look for this VideoNote icon to see which in-chapter
topics and end-of-chapter Programming Projects are available as VideoNotes.

Software failures. These between-chapter vignettes discuss real-world flaws in
software design, encouraging students to adopt sound design practices from the
beginning.

acknowledgments
I am most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. I am pleased to see

10 prEfacE

the depth of the faculty’s concern for their students and the students’ thirst for
knowledge. Your comments and questions are always welcome.

I am particularly thankful for the assistance, insight, and attention to detail
of Robert Burton from Brigham Young University. For years, Robert has con-
sistently provided valuable feedback that helps shape and evolve this textbook.

Brian Fraser of Simon Fraser University also has recently provided some excel-
lent feedback that helped clarify some issues in this edition. Such interaction with
computing educators is incredibly valuable.

I also want to thank Dan Joyce from Villanova University, who developed the
Self-Review questions, ensuring that each relevant topic had enough review mate-
rial, as well as developing the answers to each.

I continue to be amazed at the talent and effort demonstrated by the team at
Pearson. Matt Goldstein, our editor, has amazing insight and commitment. His
assistant, Kelsey Loanes, is a source of consistent and helpful support. Marketing
Manager Yez Alayan makes sure that instructors understand the pedagogical advan-
tages of the text. The cover was designed by the skilled talents of Joyce Wells. Scott
Disanno, Marilyn Lloyd, and Kayla Smith-Tarbox led the production effort. The
Addison-Wesley folks were supported by a phenomenal team at Cenveo Publisher
Services including Jerilyn Bockorick for the interior design and Harleen Chopra
for project management. We thank all of these people for ensuring that this book
meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews.
They, as well as many other instructors and friends, have provided valuable feed-
back. They include:

Elizabeth Adams James Madison University
Hossein Assadipour Rutgers University
David Atkins University of Oregon
Lewis Barnett University of Richmond
Thomas W. Bennet Mississippi College
Gian Mario Besana DePaul University
Hans-Peter Bischof Rochester Institute of Technology
Don Braffitt Radford University
Robert Burton Brigham Young University
John Chandler Oklahoma State University
Robert Cohen University of Massachusetts, Boston
Dodi Coreson Linn Benton Community College
James H. Cross II Auburn University
Eman El-Sheikh University of West Florida
Sherif Elfayoumy University of North Florida

 prEfacE 11

Christopher Eliot University of Massachusetts, Amherst
Wanda M. Eanes Macon State College
Stephanie Elzer Millersville University
Matt Evett Eastern Michigan University
Marj Feroe Delaware County Community College, Pennsylvania
John Gauch University of Kansas
Chris Haynes Indiana University
James Heliotis Rochester Institute of Technology
Laurie Hendren McGill University
Mike Higgs Austin College
Stephen Hughes Roanoke College
Daniel Joyce Villanova University
Saroja Kanchi Kettering University
Gregory Kapfhammer Allegheny College
Karen Kluge Dartmouth College
Jason Levy University of Hawaii
Peter MacKenzie McGill University
Jerry Marsh Oakland University
Blayne Mayfield Oklahoma State University
Gheorghe Muresan Rutgers University
Laurie Murphy Pacific Lutheran University
Dave Musicant Carleton College
Faye Navabi-Tadayon Arizona State University
Lawrence Osborne Lamar University
Barry Pollack City College of San Francisco
B. Ravikumar University of Rhode Island
David Riley University of Wisconsin (La Crosse)
Bob Roos Allegheny College
Carolyn Rosiene University of Hartford
Jerry Ross Lane Community College
Patricia Roth Southeastern Polytechnic State University
Carolyn Schauble Colorado State University
Arjit Sengupta Georgia State University
Bennet Setzer Kennesaw State University
Vijay Srinivasan JavaSoft, Sun Microsystems, Inc.
Stuart Steiner Eastern Washington University
Katherine St. John Lehman College, CUNY
Alexander Stoytchev Iowa State University
Ed Timmerman University of Maryland, University College
Shengru Tu University of New Orleans
Paul Tymann Rochester Institute of Technology
John J. Wegis JavaSoft, Sun Microsystems, Inc.

12 prEfacE

Ken Williams North Carolina Agricultural and Technical University
Linda Wilson Dartmouth College
David Wittenberg Brandeis University
Wang-Chan Wong California State University (Dominguez Hills)

Thanks also go to my friends and former colleagues at Villanova University
who have provided so much wonderful feedback. They include Bob Beck, Cathy
Helwig, Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.

Special thanks go to Pete DePasquale of The College of New Jersey for the
design and evolution of the PaintBox project, as well as the original Java Class
Library appendix.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Saverio Perugini. Our apolo-
gies to anyone we may have omitted.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is a
tremendous resource. Their conferences provide an opportunity for educators from
all levels and all types of schools to share ideas and materials. If you are an educator
in any area of computing and are not involved with SIGCSE, you’re missing out.

Pearson Education wishes to thank Arup Bhattacharjee, Soumen Mukherjee and
Raghavan for reviewing the Global Edition.

Contents

preface 5

chapter 1 Introduction 27

1.1 computer processing 28
Software Categories 29
Digital Computers 31
Binary Numbers 33

1.2 Hardware components 36
Computer Architecture 37
Input/Output Devices 38
Main Memory and Secondary Memory 39
The Central Processing Unit 43

1.3 Networks 46
Network Connections 46
Local-Area Networks and

Wide-Area Networks 48
The Internet 49
The World Wide Web 50
Uniform Resource Locators 51

1.4 The Java programming Language 52
A Java Program 54
Comments 56
Identifiers and Reserved Words 57
White Space 60

1.5 program Development 62
Programming Language Levels 62
Editors, Compilers, and Interpreters 65
Development Environments 66
Syntax and Semantics 67
Errors 68

13

14 cONTENTS

1.6 Object-Oriented programming 70
Problem Solving 71
Object-Oriented Software Principles 72

chapter 2 Data and Expressions 83

2.1 character Strings 84
The print and println Methods 84
String Concatenation 86
Escape Sequences 89

2.2 Variables and assignment 91
Variables 91
The Assignment Statement 93
Constants 95

2.3 primitive Data Types 97
Integers and Floating Points 97
Characters 99
Booleans 100

2.4 Expressions 101
Arithmetic Operators 101
Operator Precedence 102
Increment and Decrement Operators 106
Assignment Operators 107

2.5 Data conversion 109
Conversion Techniques 111

2.6 Interactive programs 113
The Scanner Class 113

2.7 Graphics 118
Coordinate Systems 118
Representing Color 120

2.8 applets 121
Executing Applets Using the Web 124

2.9 Drawing Shapes 125
The Graphics Class 125

Software failure:
NASA Mars Climate Orbiter

and Polar Lander 137

 cONTENTS 15

chapter 3 Using classes and Objects 139

3.1 creating Objects 140
Aliases 142

3.2 The String class 144

3.3 packages 148
The import Declaration 150

3.4 The Random class 152

3.5 The Math class 155

3.6 formatting Output 158
The NumberFormat Class 158
The DecimalFormat Class 160
The printf Method 161

3.7 Enumerated Types 164

3.8 Wrapper classes 167
Autoboxing 169

3.9 components and containers 169
Frames and Panels 170

3.10 Nested panels 174

3.11 Images 177

chapter 4 Writing classes 185

4.1 classes and Objects revisited 186

4.2 anatomy of a class 188
Instance Data 193
UML Class Diagrams 193

4.3 Encapsulation 195
Visibility Modifiers 196
Accessors and Mutators 197

4.4 anatomy of a Method 198
The return Statement 200
Parameters 201

16 cONTENTS

Local Data 201
Bank Account Example 202

4.5 constructors revisited 207

4.6 Graphical Objects 208

4.7 Graphical User Interfaces 217

4.8 Buttons 218

4.9 Text fields 222

Software failure:
Denver Airport Baggage

Handling System 231

chapter 5 conditionals and Loops 233

5.1 Boolean Expressions 234
Equality and Relational Operators 235
Logical Operators 236

5.2 The if Statement 239
The if-else Statement 242
Using Block Statements 245
Nested if Statements 249

5.3 comparing Data 252
Comparing Floats 252
Comparing Characters 253
Comparing Objects 254

5.4 The while Statement 256
Infinite Loops 260
Nested Loops 262
The break and continue Statements 265

5.5 Iterators 267
Reading Text Files 268

5.6 The arrayList class 271

5.7 Determining Event Sources 274

 cONTENTS 17

5.8 check Boxes and radio Buttons 277
Check Boxes 277
Radio Buttons 281

Software failure:
Therac-25 293

chapter 6 More conditionals and Loops 295

6.1 The switch Statement 296

6.2 The conditional Operator 300

6.3 The do Statement 301

6.4 The for Statement 305
The for-each Loop 308
Comparing Loops 310

6.5 Drawing with Loops and conditionals 311

6.6 Dialog Boxes 317

chapter 7 Object-Oriented Design 327

7.1 Software Development activities 328

7.2 Identifying classes and Objects 329
Assigning Responsibilities 331

7.3 Static class Members 331
Static Variables 332
Static Methods 332

7.4 class relationships 336
Dependency 336
Dependencies Among Objects

of the Same Class 336
Aggregation 342
The this Reference 346

7.5 Interfaces 348
The Comparable Interface 353
The Iterator Interface 354

18 cONTENTS

7.6 Enumerated Types revisited 355

7.7 Method Design 358
Method Decomposition 359
Method Parameters Revisited 364

7.8 Method Overloading 369

7.9 Testing 371
Reviews 372
Defect Testing 372

7.10 GUI Design 375

7.11 Layout Managers 376
Flow Layout 378
Border Layout 382
Grid Layout 385
Box Layout 387

7.12 Borders 391

7.13 containment Hierarchies 395

Software failure:
2003 Northeast Blackout 403

chapter 8 arrays 405

8.1 array Elements 406

8.2 Declaring and Using arrays 407
Bounds Checking 410
Alternate Array Syntax 415
Initializer Lists 415
Arrays as Parameters 416

8.3 arrays of Objects 418

8.4 command-Line arguments 428

8.5 Variable Length parameter Lists 430

8.6 Two-Dimensional arrays 434
Multidimensional Arrays 438

 cONTENTS 19

8.7 polygons and polylines 439
The Polygon Class 442

8.8 Mouse Events 444

8.9 Key Events 453

Software failure:
LA Air Traffic Control 467

chapter 9 Inheritance 469

9.1 creating Subclasses 470
The protected Modifier 473
The super Reference 476
Multiple Inheritance 479

9.2 Overriding Methods 481
Shadowing Variables 483

9.3 class Hierarchies 484
The Object Class 486
Abstract Classes 487
Interface Hierarchies 489

9.4 Visibility 489

9.5 Designing for Inheritance 492
Restricting Inheritance 493

9.6 The component class Hierarchy 494

9.7 Extending adapter classes 497

9.8 The Timer class 501

Software failure:
Ariane 5 Flight 501 511

chapter 10 polymorphism 513

10.1 Late Binding 514

10.2 polymorphism via Inheritance 515

20 cONTENTS

10.3 polymorphism via Interfaces 528

10.4 Sorting 530
Selection Sort 531
Insertion Sort 537
Comparing Sorts 538

10.5 Searching 539
Linear Search 539
Binary Search 541
Comparing Searches 545

10.6 Designing for polymorphism 545

10.7 Event processing 547

10.8 file choosers 548

10.9 color choosers 551

10.10 Sliders 553

chapter 11 Exceptions 563

11.1 Exception Handling 564

11.2 Uncaught Exceptions 565

11.3 The try-catch Statement 566
The finally Clause 570

11.4 Exception propagation 571

11.5 The Exception class Hierarchy 575
Checked and Unchecked Exceptions 578

11.6 I/O Exceptions 579

11.7 Tool Tips and Mnemonics 583

11.8 combo Boxes 590

11.9 Scroll panes 595

11.10 Split panes 598

 cONTENTS 21

chapter 12 recursion 609

12.1 recursive Thinking 610
Infinite Recursion 610
Recursion in Math 611

12.2 recursive programming 612
Recursion vs. Iteration 615
Direct vs. Indirect Recursion 615

12.3 Using recursion 616
Traversing a Maze 617
The Towers of Hanoi 622

12.4 recursion in Graphics 627
Tiled Pictures 627
Fractals 630

chapter 13 collections 643

13.1 collections and Data Structures 644
Separating Interface from Implementation 644

13.2 Dynamic representations 645
Dynamic Structures 645
A Dynamically Linked List 646
Other Dynamic List Representations 651

13.3 Linear Data Structures 653
Queues 653
Stacks 654

13.4 Non-Linear Data Structures 657
Trees 657
Graphs 658

13.5 The Java collections apI 660
Generics 660

22 cONTENTS

appendix a Glossary 667

appendix B Number Systems 691

appendix c The Unicode character Set 699

appendix D Java Operators 703

appendix E Java Modifiers 709

appendix f Java coding Guidelines 713

appendix G Java applets 719

appendix H regular Expressions 721

appendix I Javadoc Documentation Generator 723

appendix J The paintBox project 729

appendix K GUI Events 741

appendix L Java Syntax 745

appendix M The Java class Library 759

appendix N answers to Self-review Questions 761

Index 815

 cONTENTS 23

VideoNote

Overview of program elements. 55
comparison of Java IDEs. 67
Examples of various error types. 69
Developing a solution for pp 1.2. 80
Example using strings and escape sequences. 89
review of primitive data and expressions. 102
Example using the Scanner class. 117
Example using drawn shapes. 127
Developing a solution of pp 2.10. 135
creating objects. 141
Example using the random and Math classes. 155
Example using frames and panels. 176
Developing a solution of pp 3.6. 184
Dissecting the Die class. 190
Discussion of the account class. 204
Example using an extended Jpanel. 208
Overview of GUI development. 217
Developing a solution of pp 4.2. 228
Examples using conditionals. 247
Examples using while loops. 259
Examples using check boxes and radio buttons. 281
Developing a solution of pp 5.4. 290
Examples using for loops. 306
Developing a solution of pp 6.2 322
Exploring the static modifier. 331
Examples of method overloading. 370
Discussion of layout managers. 382
Developing a solution of pp 7.1. 400

24 cONTENTS

Overview of arrays. 409
Discussion of the Lettercount example. 414
Example using rubberbanding and arrays. 449
Developing a solution of pp 8.5. 462
Overview of inheritance. 475
Example using a class hierarchy. 487
Example using the Timer class. 501
Developing a solution of pp 9.11. 509
Exploring the firm program. 516
Sorting comparable objects. 532
Developing a solution of pp 10.1. 560
proper exception handling. 571
Exploring GUI design details. 587
Developing a solution of pp 11.1. 606
Tracing the MazeSearch program. 620
Exploring the Towers of Hanoi. 623
Developing a solution of pp 12.1. 639
Example using a linked list. 646
Implementing a queue. 654
Developing a solution of pp 13.3. 664

Cover: © Eugene Sergeev/Shutterstock
01-2 Screenshots reprinted with permission from Apple, Inc.
02-SF NASA Earth Observing System
03-3 Java API doucumentation. Used by permission of Oracle Corporate Counsel
04-SFd Susan Van Etten/PhotoEdit
05-SF-b David Joel/Stone/Getty Images
07-SF-c-1 and 07-SF-c-2 National Oceanic and Atmospheric Administration
08-SF-a Matthew McVay/Getty Images
09-SF-e Mario Fourmy/REA/Redux Pictures
Listing 10.13 Robert Frost, The Road Not Taken (1916)
Display Listing 11.13 © MShieldsPhotos/Alamy
M.1 http://docs.oracle.com/javase7/docs/api
UNF02-01, UNF11-01, UNF12-01 John Lewis
© Microsoft Corporation. Used with permission from Microsoft. MICROSOFT

AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN
THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART
OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS
AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE
SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS
OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/
OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE
FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS
CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES
OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR
ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/
OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY
BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

Credits

25

 This page is intentionally left blank.

27

C h a p t e r O b j e C t i v e s
● Describe the relationship between hardware and software.

● Define various types of software and how they are used.

● Identify the core hardware components of a computer and explain their
roles.

● Explain how the hardware components interact to execute programs and
manage data.

● Describe how computers are connected into networks to share information.

● Introduce the Java programming language.

● Describe the steps involved in program compilation and execution.

● Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand

software, we must first have a fundamental understanding of its role

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various

hardware components, and the way those components are connected

into networks, are important prerequisites to the study of software

development. This chapter first discusses basic computer processing

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1

1.1 Computer processing

 All computer systems, whether it’s a desktop, laptop, tablet, smart phone, gaming
console, or a special-purpose device like a car’s navigation system, share certain
characteristics. The details vary, but they all process data in similar ways. W hile the
majority of this book deals with the development of software, w e’ll begin with an
overview of computer processing to set the context. It’s important to establish some
fundamental terminology and see how key pieces of a computer system interact.

 A computer system is made up of hardware and software. The hardware com-
ponents of a computer system are the physical, tangible pieces that support the
computing effort. They include chips, boxes, wires, keyboards, speakers, disks,
memory cards, USB flash drives (also called jump drives), cables, plugs, printers,
mice, monitors, routers, and so on. If you can physically touch it and it can be
considered part of a computer system, then it is computer hardware.

 The hardware components of a computer are essentially useless
without instructions to tell them what to do. A program is a series of
instructions that the hardware executes one after another. Software
consists of programs and the data those programs use. Software is
the intangible counterpart to the physical hardware components.

Together they form a tool that we can use to help solve problems.

 The key hardware components in a computer system are

■ central processing unit (CPU)

■ input/output (I/O) devices

■ main memory

■ secondary memory devices

 Each of these hardware components is described in detail in the next section. For
now, let’s simply examine their basic roles. The central processing unit (CPU) is
the device that executes the individual commands of a program. Input/output
(I/O) devices , such as the keyboard, mouse, and monitor, allow a human being to
interact with the computer.

 Programs and data are held in storage devices called memory, which fall into
two categories: main memory and secondary memory. Main memory is the storage
device that holds the software while it is being processed by the CPU. Secondary
memory devices store software in a relatively permanent manner. The most impor-
tant secondary memory device of a typical computer system is the hard disk that
resides inside the main computer box. A USB flash drive is also an important sec-
ondary memory device. A typical USB flash drive cannot store nearly as much infor-
mation as a hard disk. USB flash drives have the advantage of portability; they can
be removed temporarily or moved from computer to computer as needed. Another
portable secondary memory device is the compact disc (CD).

28 Chapter 1 Introduction

 KeY COnCept
 A computer system consists of
hardware and software that work in
concert to help us solve problems.

 Figure 1.1 shows how information moves among the basic hardware compo-
nents of a computer. Suppose you have an executable program you wish to run.
The program is stored on some secondary memory device, such as a hard disk.
When you instruct the computer to execute your program, a copy of the program
is brought in from secondary memory and stored in main memory. The CPU reads
the individual program instructions from main memory. The CPU
then executes the instructions one at a time until the program ends.
The data that the instructions use, such as two numbers that will
be added together, also are stored in main memory. They are either
brought in from secondary memory or read from an input device
such as the keyboard. During execution, the program may display
information to an output device such as a monitor.

 The process of executing a program is fundamental to the operation of a com-
puter. All computer systems basically work in the same way.

 software Categories
 Software can be classified into many categories using various criteria. At this point
we will simply differentiate between system programs and application programs.

 The operating system is the core software of a computer. It performs two
important functions. First, it provides a user interface that allows the user to inter-
act with the machine. Second, the operating system manages computer resources
such as the CPU and main memory. It determines when programs are allowed to
run, where they are loaded into memory, and how hardware devices communi-
cate. It is the operating system’s job to make the computer easy to
use and to ensure that it runs efficiently.

 Several popular operating systems are in use today. The Windows
operating system was developed for personal computers by Microsoft,
which has captured the lion’s share of the operating systems market.

1.1 Computer Processing 29

 Figure 1.1 A simplified view of a computer system

 KeY COnCept
 The CPU reads the program
instructions from main memory,
executing them one at a time until
the program ends.

 KeY COnCept
 The operating system provides
a user interface and manages
computer resources.

30 Chapter 1 Introduction

Various versions of the Unix operating system are also quite popular, especially
in larger computer systems. A version of Unix called Linux was developed as an
open source project, which means that many people contributed to its develop-
ment and its code is freely available. Because of that, Linux has become a par-
ticular favorite among some users. Mac OS X is an operating system used for
computing systems developed by Apple Computers.

 Operating systems are often specialized for mobile devices such as smart phones
and tablets. The iOS operating system from Apple is used on the iPhone, iPad, and
iPod Touch. It is similar in functionality and appearance to the desktop Mac OS,
but tailored for the smaller devices. Likewise, Windows Phone is the version of the
Windows operating system from Microsoft used in their phones. Android is a Linux-
based mobile operating system developed by Google and used on many phones.

 An application (often shortened in conversation to “app”) is a generic term for
just about any software other than the operating system. Word processors, missile
control systems, database managers, Web browsers, and games all can be consid-
ered application programs. Each application program has its own user interface
that allows the user to interact with that particular program.

 The user interface for most modern operating systems and applications is a
graphical user interface (GUI, pronounced “gooey”), which, as the name implies,
makes use of graphical screen elements. Among many others, these elements include

■ windows , which are used to separate the screen into distinct work areas

■ icons , which are small images that represent computer resources, such as a file

■ menus, checkboxes, and radio buttons , which provide the user with select-
able options

■ sliders , which allow the user to select from a range of values

■ buttons , which can be “pushed” with a mouse click to indicate a user selection

 The mouse is the primary input device used with GUIs; thus, GUIs are some-
times called point-and-click interfaces . The screen shot in Figure 1.2 shows an
example of a GUI.

 The interface to an application or operating system is an impor-
tant part of the software because it is the only part of the program
with which the user interacts directly. To the user, the interface is
the program. Throughout this book we discuss the design and imple-

mentation of graphical user interfaces.

 The focus of this book is the development of high-quality application pro-
grams. We explore how to design and write software that will perform calcula-
tions, make decisions, and present results textually or graphically. We use the
Java programming language throughout the text to demonstrate various comput-
ing concepts.

 KeY COnCept
 As far as the user is concerned, the
interface is the program.

