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Welcome to the Eighth Edition of Java Software Solutions: Foundations of 
Program Design. We are pleased that this book has served the needs of so many 
students and faculty over the years. This edition has been tailored further to 
improve the coverage of topics key to introductory computing.

New to This Edition
The biggest updates to this edition include the following:

■ Updated all graphical screen shots.

■ Added additional screen shots to show interface options.

■ Revised end-of-chapter exercises and programming projects.

■ Revised all code for consistent spacing issues.

■ Improved discussions of Java translation, text file I/O, and other topics.

Feedback from both instructors and students continues to make it clear that we 
have hit the mark with the overall vision of the book. The emphasis remains on 
presenting underlying core concepts in a clear and gradual manner. The Graphics 
Track sections in each chapter still segregate the coverage of graphics and graphi-
cal user interfaces, giving extreme flexibility in how that material gets covered. 
The casual writing style and entertaining examples still rule the day.

The displays of screen shots for graphics-based programs, including programs with 
graphical user interfaces, have all been updated. The previous versions were dated in 
terms of the look-and-feel. We also updated some as needed to improve pedagogy.

On some graphics programs, we added additional screen shots in situations 
where it was beneficial to see how the program window looks under different 
situations or window sizes.

We also focused on the end-of-chapter exercises and programming projects in 
this revision. We added, subtracted, and modified these to provide an appropriate 
and updated set.

Throughout the book, the examples had become inconsistent in some issues 
related to the use of white space. We carefully went through each example and 
code fragment to ensure that a consistent and appropriate style was applied.

Finally, as always, we improved discussions throughout the book, sometimes 
in minor ways, and a few include significant improvements. In particular, the 
discussion of Java translation was updated in Chapter 1 and throughout to focus 
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on term JVM rather than the less helpful term interpreter. The figure related to 
the translation process was also updated. The text file I/O discussion was also 
updated, along with its example.

cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound 
introductory text:

■ True object-orientation. A text that really teaches a solid object-oriented 
approach must use what we call object-speak. That is, all processing should 
be discussed in object-oriented terms. That does not mean, however, that 
the first program a student sees must discuss the writing of multiple classes 
and methods. A student should learn to use objects before learning to write 
them. This text uses a natural progression that culminates in the ability to 
design real object-oriented solutions.

■ Sound programming practices. Students should not be taught how to 
program; they should be taught how to write good software. There’s a 
difference. Writing software is not a set of cookbook actions, and a good 
program is more than a collection of statements. This text integrates 
practices that serve as the foundation of good programming skills. These 
practices are used in all examples and are reinforced in the discussions. 
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques 
throughout the text. The Software Failure vignettes reiterate these lessons 
by demonstrating the perils of not following these sound practices.

■ Examples. Students learn by example. This text is filled with fully 
 implemented examples that demonstrate specific concepts. We have 
 intertwined small, readily understandable examples with larger, more 
 realistic ones. There is a balance between graphics and nongraphics  programs.  
The VideoNotes provide additional examples in a live  presentation format.

■ Graphics and GUIs. Graphics can be a great motivator for students, and 
their use can serve as excellent examples of object-orientation. As such, 
we use them throughout the text in a well-defined set of sections that we 
call the Graphics Track. This coverage includes the use of event processing 
and GUIs. Students learn to build GUIs in the appropriate way by using a 
natural progression of topics. The Graphics Track can be avoided entirely 
for those who do not choose to use graphics.

chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic 
architecture and hardware, networking, programming, and language translation. 
Java is introduced in this chapter, and the basics of general program development, 
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as well as object-oriented programming, are discussed. This chapter contains 
broad introductory material that can be covered while students become familiar 
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used 
in a Java program and the use of expressions to perform calculations. It discusses 
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes 
and the objects that can be created from them. Classes and objects are used to 
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes 
and methods. Topics include instance data, visibility, scope, method parameters, 
and return types. Encapsulation and constructors are covered as well. Some of the 
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to 
make decisions. Then the if statement and while loop are explored in detail. 
Once loops are established, the concept of an iterator is introduced and the 
Scanner class is revisited for additional input parsing and the reading of text files. 
Finally, the ArrayList class introduced, which provides the option for managing 
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop. 
The for-each loop is also used to process iterators and ArrayList objects.

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of issues 
related to the design of classes. Techniques for identifying the classes and objects 
needed for a problem and the relationships among them are discussed. This chap-
ter also covers static class members, interfaces, and the design of enumerated type 
classes. Method design issues and method overloading are also discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array processing. 
The nature of an array as a low-level programming structure is contrasted to the 
higher-level object management approach. Additional topics include command-
line arguments, variable length parameter lists, and multidimensional arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such 
as class hierarchies, overriding, and visibility. Strong emphasis is put on the 
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates 
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of 
polymorphism. Design issues related to polymorphism are examined as well.
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Chapter 11 (Exceptions) explores the class hierarchy from the Java standard 
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and 
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of 
recursion. Several examples from various domains are used to demonstrate how 
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying 
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an 
introduction to a CS2 course.

Supplements

Student Online resources
These student resources can be accessed at the book’s Companion Website,  
www.pearsonglobaleditions.com/lewis:

■ Source Code for all the programs in the text

■ Links to Java development environments

■ VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced  
instruction with easy navigation including the ability to select, play, re-
wind, fast-forward, and stop within each VideoNote exercise. Margin icons 
in your textbook let you know when a VideoNote video is available for a 
particular concept or homework problem.

Instructor resources
The following supplements are available to qualified instructors only. Visit the 
Pearson Education Instructor Resource Center www.pearsonglobaleditions.com/
lewis for information on how to access them:

■ Presentation Slides—in PowerPoint.

■ Solutions—includes solutions to exercises and programming projects.

■ Test Bank with powerful test generator software—includes a wealth of free 
response, multiple-choice, and true/false type questions.

■ Lab Manual—lab exercises are designed to accompany the topic 
progression in the text.
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features
Key concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the 
end of each chapter.

Listings. All programming examples are presented in clearly labeled listings, fol-
lowed by the program output, a sample run, or screen shot display as appropri-
ate. The code is colored to visually distinguish comments and reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the 
Java language are discussed in special highlighted sections with diagrams that 
clearly identify the valid forms for a statement or construct. Syntax diagrams for 
the entire Java language are presented in Appendix L.

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without loss 
of continuity, or focused on specifically as desired. The material in any Graphics 
Track section relates to the main topics of the chapter in which it is found. 
Graphics Track sections are indicated by a brown border on the edge of the page.

Summary of Key concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-review Questions and answers. These short-answer questions review 
the fundamental ideas and terms established in the preceding section. They are 
designed to allow students to assess their own basic grasp of the material. The 
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or 
writing of code fragments, and a thorough grasp of the chapter content. While the 
exercises may deal with code, they generally do not require any online  activity.

programming projects. These problems require the design and implementation 
of Java programs. They vary widely in level of difficulty.

VideoNotes. Presented by the author, VideoNotes explain topics visually through 
informal videos in an easy-to-follow format, giving students the extra help they need 
to grasp important concepts. Look for this VideoNote icon to see which in-chapter 
topics and end-of-chapter Programming Projects are available as VideoNotes.

Software failures. These between-chapter vignettes discuss real-world flaws in 
software design, encouraging students to adopt sound design practices from the 
beginning.
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C h a p t e r  O b j e C t i v e s
● Describe the relationship between hardware and software.

● Define various types of software and how they are used.

● Identify the core hardware components of a computer and explain their 
roles.

● Explain how the hardware components interact to execute programs and 
manage data.

● Describe how computers are connected into networks to share information.

● Introduce the Java programming language.

● Describe the steps involved in program compilation and execution.

● Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand 

software, we must first have a fundamental understanding of its role 

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various 

hardware components, and the way those components are connected 

into networks, are important prerequisites to the study of software 

development. This chapter first discusses basic computer processing 

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1



1.1  Computer processing 

 All computer systems, whether it’s a desktop, laptop, tablet, smart phone, gaming 
console, or a special-purpose device like a car’s navigation system, share certain 
characteristics. The details vary, but they all process data in similar ways. W hile the 
majority of this book deals with the development of software, w e’ll begin with an 
overview of computer processing to set the context. It’s important to establish some 
fundamental terminology and see how key pieces of a computer system interact. 

 A computer system is made up of hardware and software. The   hardware   com-
ponents of a computer system are the physical, tangible pieces that support the 
computing effort. They include chips, boxes, wires, keyboards, speakers, disks, 
memory cards, USB flash drives (also called jump drives), cables, plugs, printers, 
mice, monitors, routers, and so on. If you can physically touch it and it can be 
considered part of a computer system, then it is computer hardware.    

 The hardware components of a computer are essentially useless 
without instructions to tell them what to do. A   program   is a series of 
instructions that the hardware executes one after another.   Software
consists of programs and the data those programs use. Software is 
the intangible counterpart to the physical hardware components. 

Together they form a tool that we can use to help solve problems. 

 The key hardware components in a computer system are 

■   central processing unit (CPU)  

■   input/output (I/O) devices  

■   main memory  

■   secondary memory devices   

 Each of these hardware components is described in detail in the next section. For 
now, let’s simply examine their basic roles. The   central processing unit   (CPU) is 
the device that executes the individual commands of a program.   Input/output
(I/O)  devices  , such as the keyboard, mouse, and monitor, allow a human being to 
interact with the computer. 

 Programs and data are held in storage devices called memory, which fall into 
two categories: main memory and secondary memory.   Main memory   is the storage 
device that holds the software while it is being processed by the CPU.   Secondary 
memory   devices store software in a relatively permanent manner. The most impor-
tant secondary memory device of a typical computer system is the hard disk that 
resides inside the main computer box. A USB flash drive is also an important sec-
ondary memory device. A typical USB flash drive cannot store nearly as much infor-
mation as a hard disk. USB flash drives have the advantage of portability; they can 
be removed temporarily or moved from computer to computer as needed. Another 
portable secondary memory device is the compact disc (CD). 
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 A computer system consists of 
hardware and software that work in 
concert to help us solve problems. 



  Figure   1.1    shows how information moves among the basic hardware compo-
nents of a computer. Suppose you have an executable program you wish to run. 
The program is stored on some secondary memory device, such as a hard disk. 
When you instruct the computer to execute your program, a copy of the program 
is brought in from secondary memory and stored in main memory. The CPU reads 
the individual program instructions from main memory. The CPU 
then executes the instructions one at a time until the program ends. 
The data that the instructions use, such as two numbers that will 
be added together, also are stored in main memory. They are either 
brought in from secondary memory or read from an input device 
such as the keyboard. During execution, the program may display 
information to an output device such as a monitor.     

 The process of executing a program is fundamental to the operation of a com-
puter. All computer systems basically work in the same way. 

  software Categories 
 Software can be classified into many categories using various criteria. At this point 
we will simply differentiate between system programs and application programs. 

 The   operating system   is the core software of a computer. It performs two 
important functions. First, it provides a   user interface   that allows the user to inter-
act with the machine. Second, the operating system manages computer resources 
such as the CPU and main memory. It determines when programs are allowed to 
run, where they are loaded into memory, and how hardware devices communi-
cate. It is the operating system’s job to make the computer easy to 
use and to ensure that it runs efficiently.    

 Several popular operating systems are in use today. The Windows 
operating system was developed for personal computers by Microsoft, 
which has captured the lion’s share of the operating systems market. 
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  Figure 1.1  A simplified view of a computer system       
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Various versions of the Unix operating system are also quite popular, especially 
in larger computer systems. A version of Unix called Linux was developed as an 
open source project, which means that many people contributed to its develop-
ment and its code is freely available. Because of that, Linux has become a par-
ticular favorite among some users. Mac OS X is an operating system used for 
computing systems developed by Apple Computers. 

 Operating systems are often specialized for mobile devices such as smart phones 
and tablets. The iOS operating system from Apple is used on the iPhone, iPad, and 
iPod Touch. It is similar in functionality and appearance to the desktop Mac OS, 
but tailored for the smaller devices. Likewise, Windows Phone is the version of the 
Windows operating system from Microsoft used in their phones. Android is a Linux-
based mobile operating system developed by Google and used on many phones. 

 An   application   (often shortened in conversation to “app”) is a generic term for 
just about any software other than the operating system. Word processors, missile 
control systems, database managers, Web browsers, and games all can be consid-
ered application programs. Each application program has its own user interface 
that allows the user to interact with that particular program. 

 The user interface for most modern operating systems and applications is a 
graphical user interface   (GUI, pronounced “gooey”), which, as the name implies, 
makes use of graphical screen elements. Among many others, these elements include 

■ windows   ,  which are used to separate the screen into distinct work areas  

■ icons   ,  which are small images that represent computer resources, such as a file  

■ menus, checkboxes, and radio buttons   ,  which provide the user with select-
able options  

■ sliders   ,  which allow the user to select from a range of values  

■ buttons   ,  which can be “pushed” with a mouse click to indicate a user selection   

 The mouse is the primary input device used with GUIs; thus, GUIs are some-
times called   point-and-click interfaces   .  The screen shot in  Figure   1.2    shows an 
example of a GUI.     

 The interface to an application or operating system is an impor-
tant part of the software because it is the only part of the program 
with which the user interacts directly. To the user, the interface   is
the program.  Throughout this book we discuss the design and imple-

mentation of graphical user interfaces.  

 The focus of this  book     is the development of high-quality application pro-
grams. We explore how to design and write software that will perform calcula-
tions, make decisions, and present results textually or graphically. We use the 
Java programming language throughout the text to demonstrate various comput-
ing concepts.  
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